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Coupling Coefficient Between Microstrip
Line and Dielectric Resonator

YASUTOSHI KOMATSU AND YOSHIKAZU MURAKAMI

Abstract —A formula of the coupling coefficient between a dielectric

resonator and a microstrip line is derived from an anafysis of the transmis-

sion characteristics of the microstip line coupled to the dielectric resona-

tor. A practical method of calculation is developed using Fourier anafysis.

The calculated values show good agreement with the experimental values.

I. INTRODUCTION

D IELECTRIC RESONATORS, offering high-Q cavity

performance in microwave integrated circuits, are

widely used in filters, stabilized oscillators, discriminators,

and so on [1 ]–[3]. When a dielectric resonator is placed

beside a rnicrostrip line and magnetically excited, this

structure works as a band-stop filter just like a structure

consisting of a waveguide and a series-connected reaction-

type cavity. These two structures, therefore, have been

considered to be represented by the identical equivalent

circuits, i.e., the parallel resonance circuits [2]–[6]. The

coupling coefficient between the dielectric resonator and

the microstrip line is indispensable to determine the equiv-

alent circuit parameters. This coupling coefficient has been

formulated in some papers [7], [13]. Those formulations,

however, do not explain the propriety of the above equiva-

lent circuit, since they integrated the coupling energy be-

tween an electromagnetic field due to the resonator and the

field due to the microstrip line within a volume of the

resonator.

In this paper, a simple formula of the coupling coef-

ficient is derived from an analysis of the transmission

characteristics of a microstrip line coupled to a dielectric

resonator. Because of this approach, the parallel resonance

equivalent circuit naturally results, and the derived formula

has the further advantages of including only the line in-

tegral instead of the volume integral and clearly expressing

the effect of the line, which was not explicitly expressed in

the previously mentioned formulas.

A practical method of calculating the coupling coeffi-

cient by means of Fourier analysis and experimental results

are also presented. The agreement between theory and

experiment is shown to be very good.

H. ANALYSIS

When a dielectric resonator is placed in the vicinity of a

microstrip line, as shown in Fig. 1, and excited in the TEola

mode, the transmission characteristics are modified by the
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Fig, 1. A dielectric resonator coupled with a mlcrostrlp line.
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Fig. 2, A conducting loop coupled with a transrmssion line

magnetic effect. The electric effect caused by the high

dielectric constant of the dielectric resonator can be as-

sumed to be very small since most of the electric field of

the microstrip line is not only concentrated under the

microstrip but also almost orthogonal to the electric field

of the resonator [4]. The magnetic effect is an interaction

between the magnetic field of the resonator and the mag-

netic field owing to the current in the microstrip line. This

interaction can be regarded as mutual inductance, and an

electromotive force is considered to be caused in the micro-

strip line. Thus the transmission characteristics of the

microstrip line forced by this electromotive force should be

analyzed first.
The analysis is made on the following assumptions.

1) The width of the microstrip is much smaller than the

diameter of the dielectric resonator.

2) The microstrip line carries only the TEM mode.

3) The dielectric resonator can be represented by a

conducting loop having in series an inductance Lo, a

capacitance CO, and a resistance R ~. The resonance occurs

at the angular frequency Q. = 1/= [8].

4) Only the TE018 mode is strongly excited and field

distortion caused by other modes is very small [4], [13].

5) The dielectric resonator couples with the rnicrostrip
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line through the distributed mutual inductance.

With these assumptions, the structure of Fig. 1 can be

represented by a resonance circuit magnetically coupled

with a transmission line, as shown in Fig. 2, where ikf(x )

indicates the distributed mutual inductance per unit length

along the X-axis. From the assumption 4), if the effect of

only the TE0,8 mode is considered, the electromagnetic

field pattern is considered symmetric with respect to the

axis which is perpendicular to the microstrip line and

passes through the center of the dielectric resonator. It is

convenient to set the origin of the X-axis on this axis of

symmetry so that M(x) can be regarded as an even func-

tion.

First, let us suppose that M(x) is null outside the

interval – 1 to + 1in order to make the following argument

clear, though M(x) is usually considered to decrease grad-

ually along the microktrip line. Let 1(x) and 10 be the

current on the transmission line and the resonance circuit,

respectively. Since the electromotive force induced on the

transmission ltie can be expressed as .– jd4(x)10, a

modified differential equation of a transmission line is

obtained as follows:

d21(x)

(

M(x)IO
—= –u*LC 1(X)+ L

dx 2 )
(1)

where L and C are the inductance and capacitance per unit

length of the transmission line, respectively. Since M(x) is

assumed to be null outside the interval – 1 to + 1, the

following equation is given by the reciprocal condition:

(j(L)/+’&f(X)~(X) dx + jcoLO +
)

~+Ro l.=O. (2)
–1 jtiCO

Substituting (2) into (1) and using ~2 = U2LC, we obtain

d21(x) =— -p*(I(x)-lQW(x))
dx2

(3)

where

~=j~~J+’M(x)z(~)d~ (4)
00–/

G=
Qo

l+jQO(U/tiO -CiJo/a) “
(5)

Equation (3) is a well-known linear differential equation

with a forcing function and the general solution is ex-

pressed as follows [9]:

l(x) =Aexp(– j/3x) +Bexp(j/3x)

–[J

+ j~K x 1 j~K

2
M(x)exp(j~x)dx exp(–j~x)–~

–1

[J 1‘M(x) exp(–j~x)dx exp(j~x). (6)
–1

Substituting (6) into (4), K is obtained as,

Considering that M(x) is an even function, this can be

simplified to

(8)

where

Y=(LLO/G)” (CJo/co),
1

q= ~’M(x)cos(flx)dx

8=j+/{/”XM(x) sin(/3x) dx)M(x)cos(/3x)dx
–[ -1

‘~_~’{(~[M(x)cos( flx)dx)M(x)sin(Bx) dx.

Then the general solution (6) becomes

1.exp(–j/lx)dx exp(jj3x). (9)

Let us determine the S-parameters of the two-port net-

work of Fig. 2 defined by -1 and + I reference planes.

First, the transmission line is supposed to be terminated by

the characteristic impedance at x = 1 to calculate S], and

S21. This leads to the condition that the second term of (9)

vanishes at x = 1

~+h(A+B) +/
/ fWx)w(-j&)~x=o. (10)y+jflS _,

The ratio of B to A can be obtained by solving (10)

(11)

SI, and S21 can now be calculated by substituting(11) into

(9)

2/3’?J2

S,, =–~exp(–2j~l)=
y + j~S

2Bn2 exp( – j2~[) (12)

~_Bn(~+B) +1
~ ~(x)exp(j~x)dx

52, =
y+jfia .[

A

1
.exp(– j2~l) =

~+ 2/3q2
exp( – j2~l-). (13)

y + j~8

( )j A~+lM(x)exp (–j~x)dx +B~+~A4(x) exp(j~x)dx

K=
–1

,LLOUO +~ +[ -Y

Ga 2~_1 [{~_,~(x)exP(jflx) dx}~(x)exp(-jPx):( ~x~(x)exp(- jBx)dx}M(x)exp( jBx)]d.x”
–[

(7)
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S22 and S12 can be obtained by taking

account

(

s,, = S22

s~, = s,~.
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the symmetry into

(14)

These results show that if we are interested in the S-param-

eters of the two-port junction defined by the – 1 and + 1

reference planes, by bringing the reference planes to x = O,

the effect of the dielectric resonator can be represented by

the two-port network at the origin whose scattering matrix

is expressed as

1
I

(15)

The two-port network having this scattering matrix is a

series impedance Z located at x = O with the value of

In the vicinity of the resonance frequency tiO,

written as follows:

(16)

this can be

(17)

where kq = q//m and Au = o – UO. We introduce

new parameters u; and Q& here instead of COOand QO to

further simplify (17)

(18)

(19)

Substituting (18) and (19) into (17), we obtain

where Ati~ = u – ti~. The term (Aw’/u~)/(l + k~8/2q2)

can be considered very small in the vicinity of ~O. If we

neglect this term, the following approximation will be

obtained:

(21)

An equivalent circuit having this impedance in series is

r-f-+
MCe Le . l/w~

Ce = 1/w.
Re

Re . (l’.

I ,1 k . turn ratio

~
transmission Ilne

z~ ,p

Fig. 3. A parallel resonant equivalent circuit of a dielectric resonator.

represented by a parallel resonance circuit, as shown in

Fig. 3. The square of the turn ratio of the transformer,

denoted by k2, expresses the coupling strength between the

dielectric resonator and the microstrip line. The expression

of the k 2 can be obtained by comparing the impedance

value of the equivalent circuit of Fig. 3 with (21)

k2 = 4k;Z0 = 40J [J+’(W/KJcos(Bx)dx]2. ,22,

So far, we assumed that M(-x ) is null outside the interval

– 1 to +1. However, if M(x) can be considered to decay

gradually along the microstrip line, we must then set the

limit of the interval far away enough from the dielectric

resonator to take all of M( x ) into account. In this case, the

upper limit of the integral of k z can be replaced by co:

k2=4a[~m(M(x)/~) cos(Bx)dx]2. (22)

The undetermined variables M(x) and LO in (22) and

(22)’ can be rewritten with other variables for practical

calculation as follows. The electromotive force is induced

on the microstrip line by the alternating magnetic field of

the dielectric resonator. This magnetic field, however, is

always accompanied by an electric field. The projection of

this electric field in the X-direction, indicated by E.X,

proves to be equal to the electromotive force from Maxwell’s

equations. Then we have

Ey=-jd4(x)Io. (23)

The average magnetic energy stored in the resonance field

is considered to be equal to the average magnetic energy

stored in the inductance in Fig. 2. This energy is given by

w= Lo I:/2. (24)

Substituting (23) and (24) into (22)’, we consequently ob-

tain

k2=#[@X/jti)cos( Bx)dx]2. (2.5)

We can determine W and EX from the resonance field of

the dielectric resonator and we can calculate the value of

k2 from (25). The coupling coefficient PO between the

resonance circuit and the transmission line is given by [10]

% = Qo/’Qext = Qc)k2/% = 2k;Qo
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Fig. 4, Side wew of a dielectric resonator on a substrate.

III. METHOD OF NUMERICAL CALCULATION

In this section, a method of calculating k 2 using (25) is

developed. First, the expression of the resonance field has

to be derived. For this, a structure consisting of a cylindri-

cal dielectric resonator and a substrate, as shown in Fig. 4,

is assumed. The microstrip line on the substrate is

eliminated for simplification. The space between upper and

lower conductors is divided into five regions. Since the

electromagnetic field in the TE018 mode has only Hz, H,,

and Efl components, it is represented in each region by a

magnetic Hertz vector which is expressed by a product of a

unit vector along the Z-axis and a scalar function [i 1]. This

scalar function in each region can be expanded in the

Fourier series as follows [12]:

1
@,=~A,pJo(kpr) sinB,p(z–(c+~+ a))

P

@2=~A2PJO(kpr) sin PzP(z+bP)

P

@3 = ~A3PJO(kpr)sin~3Pz
(27)

P

@,= D?qHO(kqr) sin8qq(. –(c+b+ a))

q

I05 = ~CqHO(kqr)sin&qz

9

where A 1P, Azp, A 3P, Bq, Cq, and 8P are constants to be

determined and

I =(6/co)2c3- jyp (28)

JO and HO are the Bessel and the second Hankel functions

of order zero. From the boundary condition that H, and Eg

derived from (27) are continuous at z = a and a + b, we

obtain

tan ~lpc + tan &pb tan &pa

&p lf32p + P2P

@l*
– — tan~,pc. tan~2pb. tan&pa = O

P,*P3P
(29)

tan~~~(c+b) + tan&qa GO

B.q b5q

(30)

usingDIP)62P,&P, B,q, and& satisfying (29) and (30),

we obtain the following relations:

/ 4psin Apa ‘Apsin%p(a + 8P)
AIPsin ~lpc = – Azpsin D3P(b+a+c$)

‘p=i[tan-’(%tanB’31)
Cqsin&qa = – Bqsin~4q(c+ b).

Next, let us consider the following integrals to formulate

the continuity condition on HZ and EO at r = R:

1)

J
a@5Cqsin /35~zdz +

J
c+ b+”@4Bqsin&q(z -c- b-a)dz

o a

[(c: sin &qa. cos~5qa
._

2
a–

1%, )(

+? (c+b)

sin~dq(c +b). cos~qa(c+b)

B’lq )1HO(kqR)

= B;Ho(kqR)Iq

where

-&qsin&q(c +b)”cos&,(c+b)
Iq =

2&qsin135qa. cos135qa

(32)

( sin &qa. cos&qa
. a–

P5, )

[

sin~~~(c+ b)”cos&q(c+ b)
+; (c+b)–

P,q I
(33)

2)

/
a@3Cqsin /35qzdz +

/
b+a@2Bqsin@4q(z –c–b–a)dz

o a

+
/

C+ b+a@lBqsin/34q( z-c- b-a)dz
a

(34)=B,zA#o(kPR)J. q
P

where

B:,- B?p
‘Pq=(p;p-#f3;q)(P:p-~?9)

x [ l?2p{cCN P2P ( a + 8P ).sin~,q(c+b)

–cos~2p (b+a+8p). sin~4qc}

+~,q{sin~2p(a+ t?p).cos~,p(c+ b)

-sin~2P(b+ a+8P).cosP,,c}]. (35)

Equations (31) are used in these calculations. Applying the

continuity condition of Hz and Ed to (32) and (34), we

obtain

/z A2#;Jo(q#)Jpq = Bqk;Ho(kqR)Iq

1 (36)
;AzPkPJ;(kPR)Jpq = BqkqH:(kqR)Iq
P
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where J; and H’ indicate the derivatives of Jo and Ho,

respectively. Eliminating B~ from (36), we have

[

JO(kPR) Ho(k,R)

~xp ‘pJ~(kPR) 1
J,,=o (37)

‘kqH; (k,R)

where

Xp=A2PkPJ; (kPR).

Equation (37) can be simplified as follows by introducing

the new parameters HP~:

~XPHp, = O (38)

P

where

[

Jo(kpR)

I

Ho(k~R) ~
(39)

‘*q= ‘pJ; (kpR) ‘kqH~(kqR) ‘q”

Equation (38) must be satisfied for each q. Since each

Fourier series in (27) is an infinite series, (38) expresses a

set of infinite number of homogeneous equations with an

infinite number of unknowns. An approximation by trun-

cating the series is possible, however, because the first few

terms in each series are predominant. If first n terms are

taken into account, a system of n homogeneous linear

equations in n unknowns is obtained

~ XPHpq=O, q=l,2,...,n. (40)
*=]

When the rank of the system matrix [H..] is equal to n – 1,
P.–

a solution of (40) is obtained as follows:

xl=a[H],~, x2=a[H]2k,

X3=a[H]3~,. 0., Xm=a[H].~

where a is an arbitrary constant and [H],, is

(41)

the cofactor

of H,, in the det [ Hpq]~ Equation (40) is th~ formula of the

boundary condition at r = R. If the solution (41) is ob-

tained, all constants A Ip, ~zp, A 3P, B~, Cq, and 8P are

determined from (31) and (36) with a constant a. All scalar

functions in (27) can be calculated with these constants

and blp, P2P, &p5 13J~,and 135qobtained from (28).

The time-average magnetic energy stored in the reso-

nance field can now be calculated. The time-average elec-

tric energy which is equal to the magnetic energy, however,

is much easier and more suitable for calculation than the

magnetic energy in this case. The time-average electric

energy is given by

W=~; E@E; dv
u

(42)

where ~, p, and @ indicate the dielectric constant, permea-

bility, and the scalar function in each region, respectively.

Actually, W can be obtained by performing the integration

over each region separately and summing them.

d!electrlc resonator

.lcro.trlpneQ
—.

Fig. 5. Electric field along a microstrip line caused by the resonance
field of a dielectric resonator.

EX can also be expressed with E@,as shown in Fig. 5, by

Ex=@ose=&(~o/w)

——
( )

–jup ro/~~ (6’@4/&-)Y=-r,z=a

)
jup (ro/~w ~

‘[;BqkqHO(kq~X)sin13~,(c+~)]- (43)

In the usual case, where c1 < C3<(2 and a <b, kg’s are all

pure imaginary numbers and HI is replaced by K1, the

modified Hankel function of order 1. In this case, the

integral in (25) is obtained from (43) as follows:

where k; = – jkq and

B;= ~A2pkpJ1(kPR)JP, /k; K,(k;R)I,. (45)

P

The right side of (45) consists of only determined variables,

hence, we can calculate the right side of (44). Substituting

(44) and (42) into (25), we can finally obtain the values of

k 2. In this case, k2 is a function of the size and c of the

resonator, c of the substrate, and the distance between the

line and the resonator.

IV. COMPARISON BETWEEN THEORETICAL AND

EXPERIMENTAL VALUES

The experiments were made with three kinds of cylindri-

cal dielectric resonators made of zirconate ceramics. The

50-fl microstrip line was fabricated on an alumina sub-

strate 0.025 in thick, and a dielectric resonator was placed

beside the line at a distanced (Fig. 1). The accuracy of d in

the experiments was within 20 pm. Experimental values of

k2 were calculated from the transmission coefficients. The

magnitude of the transmission coefficient S2, at u = tio is

given from (21) as

ls211w=mb=l/(l+2Q&k; ). (46)
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Fig. 6. The square of turn ratio kz versus the distance d between the
edge of the dielectric resonator and the edge of the microstrip line for
the various resonators, where the substrate thrckness a = 0.635 mm and
the air gap c = 8.0 mm.
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Then, from (22), we obtain

2ZO(W2JU=J
k2= 4k:Zo =

QAl~211m6 “
(47)

The transmission coefficient was measured around u; by a

network analyzer. The measured value, however, includes

the effects of the transmission loss and of the impedance

mismatch at the end of the microstrip line. The net trans-

mission coefficient without these effects proves to be ex-

pressed as follows, if the reflection coefficients r,, rz

looking outside from the ends of the microstrip line are

small:

S2, = &(l-r,s22)(l -r2s,, ) (48)

where S21~ and S21. are transmission coefficients measured

with and without the dielectric resonator, respectively.

Equation (48) means that S21 is approximately given by

S21m/S210 if r1S22 and r2Sl 1 are VeTY small. In this case,
precise determinations of reference planes is unnecessary if

the microstrip line used is so long that M(x) may decrease

enough at the end of the line. In our experiments, the

magnitudes of rl S22 and 172S,, were less than 0.04, and the

above approximation yielded, at most, an error of 8 per-

cent. Q~ was obtained from the frequency dependence

curve of 1S2,1.Theoretical values of k 2 were calculated from

(25) at u = LOO,@owas determined to satisfy the boundary

condition (40). When n = 20, tio and CJLagreed to within 2

percent in our experiments. Fig. 6 shows the comparison

between theoretical and experimental values of k2 for three

types of dielectric resonators. k2 is given as a function of d

in each figure. The theory and experiments agree well.

Fig. 7 shows the calculated values of k2 versus d, when

the upper limit of the integral in (25) is taken as a parame-

ter. k2 in this case is considered to indicate the coupling

coefficient to the microstrip line of length 21. The micro-

strip line of a length larger than 3A/2 can be regarded to

have almost the same k2 values as that of the infinite

length, as shown in Fig. 7.

V. CONCLUSION

Tlie transmission characteristics of a microstrip line cou-

pled with a cylindrical dielectric resonator has been

analyzed with the assumption that the resonator couples

with the microstrip line through the distributed mutual

inductance. A parallel resonance equivalent circuit and a

simple formula for the coupling coefficient was obtained

by solving the transmission equation. The theoretical val-

ues of the coupling coefficient could be calculated by

applying the method of Fourier analysis of the electromag-

netic field. The calculated values exhibit good agreement

with the experimental values.
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A Low-Pass Prototype Network Allowing the
Placing of Integrated Poles at Real

Frequencies

DAVID S. G. CHAMBERS AND JOHN DAVID RHODES, FELLOW, IEEE

AJMfnrct — This paper details a procedure by which a number of attenua- even or odd degree with an even or odd number of integrated poles. Only

tion poles can be placed at differing frequencies, giving an asymmetric or three of these are realizable in a symmetrical network and these possibili-

symmetrical response, the only restriction being that the network must be ties are dealt with individually.

physically symmetrical. If a number of poles are placed on one side of the An example is given in the case of an odd-degree filter with an odd

passband, this techniqne can be used to greatly increase the selectivity of a number of integrated poles placed at two frequencies on opposite sides of

filter on this side, while maintaining an equiripple passband response. the passband.

There are four possible arrangements for these filters. They can have
I. INTRODUCTION

Manuscript received March 8, 1982; revised August 25, 1982, A NUMBER of microwave filter specifications call for

The authors are with Filtronic Components Ltd., Royal London In- a very low passband loss allied to extreme selectivity
dustrial Estate, Acorn Park, Charlestown, W. Yorkshire, England. on one side of the band, and still requiring rejection on the
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