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Coupling Coefficient Between Microstrip
Line and Dielectric Resonator

YASUTOSHI KOMATSU anp YOSHIKAZU MURAKAMI

Abstract — A formula of the coupling coefficient between a dielectric
resonator and a microstrip line is derived from an analysis of the transmis-
sion characteristics of the microstrip line coupled to the dielectric resona-
tor. A practical method of calculation is developed using Fourier analysis.
The calculated values show good agreement with the experimental values.

I. INTRODUCTION

TIELECTRIC RESONATORS, offering high-Q cavity

performance in microwave integrated circuits, are
widely used in filters, stabilized oscillators, discriminators,
and so on [1]-[3]. When a dielectric resonator is placed
beside a microstrip line and magnetically excited, this
structure works as a band-stop filter just like a structure
consisting of a waveguide and a series-connected reaction-
type cavity. These two structures, therefore, have been
considered to be represented by the identical equivalent
circuits, i.e., the parallel resonance circuits [2]-[6]. The
coupling coefficient between the dielectric resonator and
the microstrip line is indispensable to determine the equiv-
alent circuit parameters. This coupling coefficient has been
formulated in some papers [7], [13]. Those formulations,
however, do not explain the propriety of the above equiva-
lent circuit, since they integrated the coupling energy be-
tween an electromagnetic field due to the resonator and the
field due to the microstrip line within a volume of the
resonator.

In this paper, a simple formula of the coupling coef-
ficient is derived from an analysis of the transmission
characteristics of a microstrip line coupled to a dielectric
resonator. Because of this approach, the parallel resonance
equivalent circuit naturally results, and the derived formula
has the further advantages of including only the line in-
tegral instead of the volume integral and clearly expressing
the effect of the line, which was not explicitly expressed in
the previously mentioned formulas.

A practical method of calculating the coupling coeffi-
cient by means of Fourier analysis and experimental results
are also presented. The agreement between theory and
experiment is shown to be very good.

II. ANALYSIS

When a dielectric resonator is placed in the vicinity of a
microstrip line, as shown in Fig. 1, and excited in the TE 5
mode, the transmission characteristics are modified by the
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Fig. 1. A dielectric resonator coupled with a microstrip line.
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Fig. 2. A conducting loop coupled with a transmussion line.

magnetic effect. The electric effect caused by the high
dielectric constant of the dielectric resonator can be as-
sumed to be very small since most of the electric field of
the microstrip line is not only concentrated under the
microstrip but also almost orthogonal to the electric field
of the resonator [4]. The magnetic effect is an interaction
between the magnetic field of the resonator and the mag-
netic field owing to the current in the microstrip line. This
interaction can be regarded as mutual inductance, and an
electromotive force is considered to be caused in the micro-
strip line. Thus the transmission characteristics of the
microstrip line forced by this electromotive force should be
analyzed first.

The analysis is made on the following assumptions.

1) The width of the microstrip is much smaller than the
diameter of the dielectric resonator.

2) The microstrip line carries only the TEM mode.

3) The dielectric resonator can be represented by a
conducting loop having in series an inductance L,, a
capacitance (,, and a resistance R . The resonance occurs
at the angular frequency w, =1/,/L,C, [8].

4) Only the TE;; mode is strongly excited and field
distortion caused by other modes is very small [4], [13].

5) The dielectric resonator couples with the microstrip
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line through the distributed mutual inductance.

With these assumptions, the structure of Fig. 1 can be
represented by a resonance circuit magnetically coupled
with a transmission line, as shown in Fig. 2, where M(x)
indicates the distributed mutual inductance per unit length
along the X-axis. From the assumption 4), if the effect of
only the TE;;; mode is considered, the electromagnetic
field pattern is considered symmetric with respect to the
axis which is perpendicular to the microstrip line and
passes through the center of the dielectric resonator. It is
convenient to set the origin of the X-axis on this axis of
symmetry so that M(x) can be regarded as an even func-
tion.

First, let us suppose that M(x) is null outside the
interval — 7/ to + /in order to make the following argument
clear, though M(x) is usually considered to decrease grad-
uvally along the microstrip line. Let I(x) and I, be the
current on the transmission line and the resonance circuit,
respectively. Since the electromotive force induced on the
transmission line can be expressed as — jwM(x)I,, a
modified differential equation of a transmission line is
obtained as follows:

izlx(—j‘)pmc(z(xn (1)

where L and C are the inductance and capacitance per unit
length of the transmission line, respectively. Since M(x) is
assumed to be null outside the interval —/ to +/, the
following equation is given by the reciprocal condition:

jwf M(x)I(x)dx+(]wL0 o IC +R ) I,=0. (2)

Substituting (2) into (1) and using 82 = «>LC, we obtain
2U(x) _

e B*(I(x)— KM(x)) (3)
where
K= ]% wio _JFIIM(x)I(x)dx 4)
_ Qo
B 1+ jQo(w/wg — wy/w) )

Equation (3) is a well-known linear differential equation
with a forcing function and the general solution is ex-
pressed as follows [9]:

1(x) = Aexp(~ jBx)+ Bexp(jBx)
# 5| [ d(x)exp i) x| exp (- o)~ EE

[ [ M) exp (= jox) d | exp (). (6)

Substituting (6) into (4), K is obtained as

Considering that M(x) is an even function, this can be
simplified to ‘

_2j9(4+B)

Y+ B ®

where

= (LLy/G)-(wo/w),  m= [ M(x)cos(px) d
5= f“{f M(x)sm(,Bx)dx}M(x)cos(,Bx)dx

_f+1{f M(x)COS(,BX)dx}M(x)Sln(IBx)dx

Then the general solution (6) becomes

I(x)= [A—E%%%ij(x)exp(jﬁx)dx]
cexp(— jBx)+|B+ 'Bz(f;;‘f)f

(©)

Let us determine the S-parameters of the two-port net-
work of Fig. 2 defined by —/ and +/ reference planes.
First, the transmission line is supposed to be terminated by
the characteristic impedance at x =/ to calculate S,, and
S,,. This leads to the condition that the second term of (9)
vanishes at x =/

-exp(—jﬁx)dx] exp (JBx).

B+ B’;’/(f —;;})‘[ M(x)exp(—j,Bx) dx=0. (10)
The ratio of B to 4 can be obtained by solving (10)
=287’ |
.‘B_=M_§_ (11)
428
Y+ JBS

S, and S, can now be calculated by substituting (11) into

®

287
+ jBé
Su=—Dexp(~281) =~ 281) (1)
EEE
ﬁn(A+B) +1 ,
A—---—-—-—-—-~Y_+_]B6 /~1M(x)exp(jﬁx)dx
Sy = A
-exp(— j2BI) = : > exp(—j2,81‘). (13)
L
Y+ jBé

j{A/flIM(x)exﬁ(— JBx) dx + B/j}lM(x)exp(jﬁx) dx}

LLw B
1Ldog®y O
Gw +

2T ey exp i) s ) exp (= ) { [ b exp (= i) ) () exp ()]

(7)
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S,, and S, can be obtained by taking the symmetry into
account
S, =8
11 22 (1 4)
$51=S13-

These results show that if we are interested in the S-param-
eters of the two-port junction defined by the — 7/ and +/
reference planes, by bringing the reference planes to x =0,
the effect of the dielectric resonator can be represented by
the two-port network at the origin whose scattering matrix
is expressed as

2879
v+ jB6 1
27 287
1+ , 1+ ,
Y+ jBd Y+ jBé
[s]o= 5 (15)
287
1 v+ jB8
2 2
L 280, 27
Y+ jpé v+ jBd

The two-port network having this scattering matrix is a
series impedance Z located at x = 0 with the value of

4By’
== 16
Y+ JBd (16)
In the vicinity of the resonance frequency w,, this can be
written as follows:

4k§Q0

z= - (17)

Aw k6  Aw
1——+ 2 —_— 4 =
@ J Qo( 2 @

where k, =n//LL,/B and Aw=w—w, We introduce
new parameters w; and Q; here instead of w, and Q, to
further simplify (17)

) k28
Wo = Wo| 17 ’2? (18)
2
05=0,/ |1+ 55 (19)
Substituting (18) and (19) into (17), we obtain
4k2Q:!
z- 1= (20)
- Aw’ 1 + o Aw’
W' k28 J QO w(/)
1+ —-
29°

where Awj=w—wj. The term (Aw’/w))/(1+ k3,6/2'n2)
can be considered very small in the vicinity of w,. If we
neglect this term, the following approximation will be
obtained: :
4k2Q;
Z=—2=__ (21)
, Aw
1+ 206

0

An equivalent circuit having this impedance in series is

Le
Le = 1/wy
Ce = 1/uwj
RE=Q’0
w k. turn ratio
—_— LYY Y
transmission line k
Zo P
- o

Fig. 3. A parallel resonant equivalent circuit of a dielectric resonator.

represented by a parallel resonance circuit, as shown in
Fig. 3. The square of the turn ratio of the transformer,
denoted by k2, expresses the coupling strength between the
dielectric resonator and the microstrip line. The expression
of the k? can be obtained by comparing the impedance
value of the equivalent circuit of Fig. 3 with (21)

k*=4k}Z,= 4w[f0+[(M(x)/\/L70)cos(Bx) dxr. (22)

So far, we assumed that M(x) is null outside the interval
— 1 to + /. However, if M(x) can be considered to decay
gradually along the microstrip line, we must then set the
limit of the interval far away enough from the dielectric
resonator to take all of M(x) into account. In this case, the
upper limit of the integral of k2 can be replaced by oo:

k?=4w [f()m(M(x)/m)cos(Bx) dx]z. (22)

The undetermined variables M(x) and L, in (22) and
(22)y can be rewritten with other variables for practical
calculation as follows. The electromotive force is induced
on the microstrip line by the alternating magnetic field of
the dielectric resonator. This magnetic field, however, is
always accompanied by an electric field. The projection of
this electric field in the X-direction, indicated by E_,
proves to be equal to the electromotive force from Maxwell’s
equations. Then we have

E . =— joM(x)I,. (23)

The average magnetic energy stored in the resonance field
1s considered to be equal to the average magnetic energy
stored in the inductance in Fig. 2. This energy is given by

W=L,1$/2. (24)
Substituting (23) and (24) into (22), we consequently ob-

tain

k2=2Ww(fooo(Ex/jw)cos(Bx)dx)2. (25)

We can determine W and E_ from the resonance field of
the dielectric resonator and we can calculate the value of
k* from (25). The coupling coefficient B, between the
resonance circuit and the transmission line is given by [10]

Bo=0Qo/Qexi = Q0k2/220 = 2k72,Q0
J“’?OQO(/O”(M()C)/JL'O)COS(/;;C)dx)z. (26)
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Fig. 4. Side view of a dielectric resonator on a substrate.

IIL.

In this section, a method of calculating k2 using (25) is
developed. First, the expression of the resonance field has
to be derived. For this, a structure consisting of a cylindri-
cal dielectric resonator and a substrate, as shown in Fig. 4,
is assumed. The microstrip line on the substrate is
eliminated for simplification. The space between upper and
lower conductors is divided into five regions. Since the
electromagnetic field in the TE,,; mode has only H,, H,,
and E, components, it is represented in each region by a
magnetic Hertz vector which is expressed by a product of a
unit vector along the Z-axis and a scalar function [11]. This
scalar function in each region can be expanded in the
Fourier series as follows [12]:

@, =3 A4,,Jy(k,r)sinB,(z—(c+b+a))
P

METHOD OF NUMERICAL CALCULATION

¢, = ZAZPJO(kpr)sin[)’zp(z + 61,)
14
O, =Y A,,J,(k,r)sin B,z 27)
4

o, = ZBqHO(qu)sinB4q(z —(c+b+a))
q

b, = ZCqHO(qu)sin,Bsqz
q

where 4,,, 4,,, 45,, B,,
determined and
k3 = (‘*’/Co)zfl _:3121; = (“’/Co)zfz - :Bzzp
= (0/Cy)e; = B,
ks = (‘*’/Co)zfl —B42q = (“’/Co)2€3 - :852[,-

J, and H, are the Bessel and the second Hankel functions
of order zero. From the boundary condition that H, and E,
derived from (27) are continuous at z=a and a+ b, we
obtain

G, and 81, are constants to be

(28)

tanB,c tanf,,b tanp;,a
+
Blp 1821) BZp
B,
- tan B, c-tan B, b-tan By, a=0  (29)
BlpﬁSp
tanfB,, (c+ b tan B, a
4q( ) S5q =0. (30)
184q BSq

Using By,, B, B3, By, and Bs, satisfying (29) and (30),

we obtain the following relations:

Ay, sin By ,a= A, ,sin B, (a+8,)

A, sinB,c=—A,,sinB,,(b+a+38,)
1

8 =——/|tan™!

|

C,sinBs,a=— B sin B, (c+b).

. (31)

2p
——tanp, ¢
Blp 'p

Next, let us consider the following integrals to formulate
the continuity condition on H, and E4 at r = R:

D
faCDSCqsin,Bsqzdz +/C+b+a®4quin,B4q(z —c—b-d)ds
0 a

C? sin Bs a-cosBs,a\ B?
— | 1 . S5q S5q 9
=15 (a ., + (c+b)
sinB,,(c+b)-cosB,, (c+b)
N Hy(k,R)
q
=quHO(qu)Iq (32)
where
[ - = Baysin By, (¢ +b)-cos B, (c+b)
7 2B, sin Bs,a-cos B a
sin B ,a-cos Bs,a
BSq
L1 (c+b)- sin By, (¢ +b)-cosB,,(c+b)
2 B4q )
(33)
2)

a . B+a .
f<D3Cqsm,85qzdz+_/ B sinf, (z~c—b—a)dz
0 a
ct+b+a
+f e ®B,sinB, (z—c—b—a)dz

= B,Y. Ay, Jy(k,R)J,, (34)
p

where

BB

o (B22p _'84211)('8121) _'842q)
X[ By, {cos By, (a+8,)-sin B, (c+b)
—cos,sz(b +a+ 8p)~sin,84qc},
+ By {sinB,,(a+8,)-cosB,,(c+b)

—sin,sz(b+a+8p)-cos,84qc}]. (35)

Equations (31) are used in these calculations. Applying the
continuity condition of H, and E, to (32) and (34), we
obtain

ZAzpngo(kpR)JM = qugHO(qu)Iq
; , , (36)
> A4,,k,J(k,R)J,, = Bk, Hy(k,R)I,

14
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where J; and H’indicate the derivatives of J, and Hy,
respectively. Eliminating B, from (36), we have

Jolk,R Hy(k,R
ZXP k 0,( P ) _ k 0,( q ) .]Pq — 0 (37)
q PJO(kpR) qHO(qu)

where
X, =A,,k,J;(k,R).

Equation (37) can be simplified as follows by introducing
the new parameters H, :

Y X H, = (38)

where
Hy(k,R) ;
qHy(k,R) ra’

i, = | olR) (39)
pJ 0 (k pR)
Equation (38) must be satisfied for each ¢. Since each
Fourier series in (27) is an infinite series, (38) expresses a
set of infinite number of homogencous equations with an
infinite number of unknowns. An approximation by trun-
cating the series is possible, however, because the first few
terms in each series are predominant. If first n terms are
taken into account, a system of n homogeneous linear
equations in #» unknowns is obtained
n
2 X,H,,=0,
p=1

q=1527...7n' (40)

When the rank of the system matrix [H,, ] is equal ton — 1,
a solution of (40) is obtained as follows:

X = a[H]llw X, = a[H]2k9

X3=a[H]3k""’Xn=a[H]nk (41)

where a is an arbitrary constant and [H],, is the cofactor
of H,, in the det[H, ]. Equation (40) is the formula of the
boundary condltton at r = R. If the solution (41) is ob-
tained, all constants 4,,, 4,,, 4;,, B,, C,, and §, are
determined from (31) and (36) with a constant a. All scalar
functions in (27) can be calculated with these constants
and B,,, B,,. B3, B4q, and s, obtained from (28).

The time-average magnetic energy stored in the reso-
nance field can now be calculated. The time-average elec-
tric energy which is equal to the magnetic energy, however,
is much easier and more suitable for calculation than the
magnetic energy in this case. The time-average electric
energy is given by

€
W=fu—2—E,,E§"dv

( a0 )( ae )*

el — || =1 dv
b, \ ar J\ dr
where €, p, and ® indicate the dielectric constant, permea-
bility, and the scalar function in each region, respectively.

Actually, W can be obtained by performing the integration
over each region separately and summing them.

_ w2‘u2

(42)

dielectric resonator

microstrip line r

EQ/LQ
Er

X

Fig. 5. Electric field along a microstrip line caused by the resonance
field of a dielectric resonator.

E_ can also be expressed with Ey, as shown in Fig. 5, by
Ex=Eacost9=Eo(ro/\/roz-i-xz)
== j“’ﬂ("o/ r02+x2)(aq)4/ar)y=—r,z=a
. d
= jop(n/ i+ 225

: ZquqH0<kq r02+x2)sin/34q(c+b) . (43)
q

In the usual case, where €, <e¢; <€, and a <b, ks are all
pure imaginary numbers and H, is replaced by K, the
modified Hankel function of order 1. In this case, the
integral in (25) is obtained from (43) as follows:

/0 (E,/jw)cosBxdx=p) Bk, rsinf, (c+b)
q

foo K1<k; ¢ +x2)
0 Vrg + x?

— W“ 7 14

= zq:qumBM(c-% b)exp(— rm/kjf +,82)

cos Bx dx
(44)

where k= — jk, and

B, =Y Ak, J\(k,R)J,, /KK \(k,R)I,. (45)
»

The right side of (45) consists of only determined variabies,
hence, we can calculate the right side of (44). Substituting
(44) and (42) into (25), we can finally obtain the values of
k2. In this case, k% is a function of the size and € of the
resonator, € of the substrate, and the distance between the
line and the resonator.

1V. CoMPARISON BETWEEN THEORETICAL AND
EXPERIMENTAL VALUES

The experiments were made with three kinds of cylindri-
cal dielectric resonators made of zirconate ceramics. The
50-Q microstrip line was fabricated on an alumina sub-
strate 0.025 in thick, and a dielectric resonator was placed
beside the line at a distance d (Fig. 1). The accuracy of d in
the experiments was within 20 pm. Experimental values of
k? were calculated from the transmission coefficients. The
magnitude of the transmission coefficient S,; at w = w, is
given from (21) as

1Sy 1/(1+204k2). (46)

wwo



KOMATSU AND MURAKAMI: COUPLING COEFFICIENT BETWEEN MICROSTRIP LINE AND DIELECTRIC RESONATOR 39

10r
Er=352
R =2.43mm
o8r h =133mm
fo =13.8 GHz
o experiment
OGT —~ theory
~
-~
04
02
00
-01 0 02 04 0.6 08 10
d (mm)
1.0p
Er= 352
R =243 mm
08r h =181 mm
fy =12 4 GHz
o experiment
06 — theory

€r=103.0

R =200mm
08 h =171 mm

fo = 8:4GHz

o experiment
06} — theory

x
04F
027
00 J - L R S| i -
-01 0 0-2 04 0.6 08 10

d (mm)

Fig. 6. The square of turn ratio k” versus the distance d between the
edge of the dielectric resonator and the edge of the microstrip line for
the various resonators, where the substrate thickness @ = 0.635 mm and
the air gap ¢= 8.0 mm.
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Fig. 7. Calculated k2 values for limited length lines, where a = 0.635
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10.0, and f, =11.68 GHz.

Then, from (22), we obtain

27, (118 muy)
Q6,S21,w=w{)

The transmission coefficient was measured around w; by a
network analyzer. The measured value, however, includes
the effects of the transmission loss and of the impedance
mismatch at the end of the microstrip line. The net trans-
mission coefficient without these effects proves to be ex-
pressed as follows, if the reflection coefficients I'|, T,
looking outside from the ends of the microstrip line are
small:

k2= 4k2Z, = (47)

- SZlm
S210

S (1-T\8,)(1-1,8,,) (48)
where S,,,, and S,,, are transmission coefficients measured
with and without the dielectric resonator, respectively.
Equation (48) means that S, is approximately given by
So1m/ o1, 1f T1Sy, and I, S, are very small. In this case,
precise determinations of reference planes is unnecessary if
the microstrip line used is so long that M(x) may decrease
enough at the end of the line. In our experiments, the
magnitudes of T'|S,, and I’,S,, were less than 0.04, and the
above approximation yielded, at most, an error of 8 per-
cent. Q) was obtained from the frequency dependence
curve of |S,,]. Theoretical values of k2 were calculated from
(25) at w = wy. w, was determined to satisfy the boundary
condition (40). When r = 20, w, and wj agreed to within 2
percent in our experiments. Fig. 6 shows the comparison
between theoretical and experimental values of k2 for three
types of dielectric resonators. k? is given as a function of d
in each figure. The theory and experiments agree well.

Fig. 7 shows the calculated values of k2 versus d, when
the upper limit of the integral in (25) is taken as a parame-
ter. k? in this case is considered to indicate the coupling
coefficient to the microstrip line of length 2/. The micro-
strip line of a length larger than 3A /2 can be regarded to
have almost the same k? values as that of the infinite
length, as shown in Fig. 7.

V. CONCLUSION

The transmission characteristics of a microstrip line cou-
pled with a cylindrical dielectric resonator has been
analyzed with the assumption that the resonator couples
with the microstrip line through the distributed mutual
inductance. A parallel resonance equivalent circuit and a
simple formula for the coupling coefficient was obtained
by solving the transmission equation. The theoretical val-
ues of the coupling coefficient could be calculated by
applying the method of Fourier analysis of the electromag-
netic field. The calculated values exhibit good agreement
with the experimental values.
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A Low-Pass Prototype Network Allowing the
Placing of Integrated Poles at Real
| Frequencies

DAVID S. G. CHAMBERS anp JOHN DAVID RHODES, FELLOW, IEEE

Abstract — This paper details a procedure by which a number of attenua-
tion poles can be placed at differing frequencies, giving an asymmetric or
symmetrical response, the only restriction being that the network must be
physically symmetrical. If a number of poles are placed on one side of the
passband, this technique can be used to greatly increase the selectivity of a
filter on this side, while maintaining an equiripple passband response.

There are four possible arrangements for these filters. They can have
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even or odd degree with an even or odd number of integrated poles. Only
three of these are realizable in a symmetrical network and these possibili-
ties are dealt with individually.

An example is given in the case of an odd-degree filter with an odd
number of integrated poles placed at two frequencies on opposite sides of
the passband.

1. INTRODUCTION

NUMBER of microwave filter specifications call for
a very low passband loss allied to extreme selectivity
on one side of the band, and still requiring rejection on the
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